
ECE 542 HW1a Arpad Voros

Preface: Problem dimensions & specifics will not be defined, nor will all problems be re-
stated. All assumptions are already defined in the homework document. For example, I will not
define v ∈ Rn, since it is already defined in the homework.

1. trace() is defined by the sum of the diagonal elements of a matrices ∈ Rn×n

(a) v>v gives us

v>v =

n∑
i=1

v2i

vv> gives us

vv> =

v1v1 . . . v1vn
...

. . .
...

vnv1 . . . vnvn


trace(vv>) results in the summation of diagonal elements, where row indices equal
column indices

trace(vv>) =

n∑
i=1

v2i

∴ v>v = trace(vv>)

(b) AB gives us

AB =


∑n

i=1 A1iBi1

. . . ∑n
i=1 AniBin


so

trace(AB) =

n∑
j=1

n∑
i=1

AjiBij

similarly, trace(BA) will give us

trace(BA) =

n∑
j=1

n∑
i=1

BjiAij

Both variables i and j range from 1 . . . n, so they are interchangeable. If we swap
them for trace(BA),

n∑
j=1

n∑
i=1

BjiAij =

n∑
i=1

n∑
j=1

BijAji

Utilizing the commutative property of multiplication & summation,

n∑
j=1

n∑
i=1

AjiBij =

n∑
i=1

n∑
j=1

BijAji

∴ trace(AB) = trace(BA)
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2. Let’s say M = I, v>Mv = v>Iv = v>v. We know that

v>v =
∑
k

= v2k

To get to
∑

k ωkv
2
k, we must scale up M by each element of ω. As a result, M is an n×n

diagonal matrix of ω.

M =

ω1 0 0

0
. . . 0

0 0 ωn


I don’t know how to transform a n × 1 vector ω into an n × n matrix M using matrix
operations, but I am sure that the solution above results in the proper summation.

3.

A =

[
A11 0
A21 A22

]
, x =

[
x1

x2

]
, b =

[
b1
b2

]
so that

Ax = b

To solve for x, b is pre-multiplied with A−1, so that

x = A−1b

4.

QP =

[
2 −3
−1 2

] [
2 3
1 2

]
=

[
1 0
0 1

]
A = PΛQ =

[
2 3
1 2

] [
1 0
0 −1

] [
2 −3
−1 2

]
=

[
7 −12
4 −7

]
To solve for A8 and A9, lets solve for A2:

A2 =

[
7 −12
4 −7

] [
7 −12
4 −7

]
=

[
1 0
0 1

]
= I2

Given that A2 = I2, A2n = In2 = I2, so that

A2n = I2

Similarly, A2n+1 = A2nA = I2A = A, so that

A2n+1 = A

meaning
A8 = I2, A

9 = A

and

An =

{
I2, n mod 2 = 0

A, n mod 2 = 1
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5.
(A−1)> = (A−1)>I

= (A−1)>[A>(A>)−1]

= [(A−1)>A>](A>)−1

= [AA−1]>(A>)−1

= I>(A>)−1

= I(A>)−1

= (A>)−1

6.

v1 =

1
1
1

 , v2 =

0
2
5

 , v3 =

1
3
6


Using an analytical approach, the vectors above are linearly dependent since v1 +v2 = v3,
meaning a vector space can be described by only using vectors v1 and v2 since v3 is
dependent on v1 and v2. Numeric approach: 1 0 1 0

1 2 3 0
1 5 6 0

→
1 0 1

0 2 2
0 5 5

→
1 0 1

0 1 1
0 0 0


7. I will be using elementary row operations on A and B to reduce them to row-echelon form

in order to find rank(A) and rank(B).

A =


1 2 3 4
0 0 −1 −2
0 0 0 4
0 1 2 −1




1 2 3 4
0 0 −1 −2
0 0 0 4
0 1 2 −1

→


1 2 3 4
0 1 2 −1
0 0 −1 −2
0 0 0 4

→


1 0 −1 6
0 1 2 −1
0 0 1 0
0 0 0 1

→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


∴ rank(A) = 4

B =

3 2 −1 −3 −2
2 −1 3 1 −3
4 5 −5 −6 1


3 2 −1 −3 −2

2 −1 3 1 −3
4 5 −5 −6 1

→
1 3 −4 −4 1

2 −1 3 1 −3
0 7 −11 −8 5

→
1 3 −4 −4 1

0 −7 11 9 −5
0 7 −11 −8 5

→1 3 −4 0 1
0 7 −11 0 5
0 0 0 1 0

→
1 0 5

7 0 −8
7

0 1 −11
7 0 5

7
0 0 0 1 0


∴ rank(B) = 3
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8. Gradient with respect to x of f(x) = ex
>Ax+b is df(x)

d~x = 2x>Aex
>Ax+b. In question 10,

these matrix derivative properties are somewhat derived.

9. f(x) = 1
2x
>P>Px + q>x + r

(a) df
d~x (x) = x>P>P + q>

(b) As the problem states, we can show that the Hessian of the matrix is P>P , therefore
all positive values. This means the function’s slope is increasing at a constant rate,
meaning that there exists a minimum. That minimum is when the first derivative
equals 0.

df

d~x
(x) = x>P>P + q> = 0

x>P>P = −q>

P>Px = −q

Px = −(P>)−1q

x = −(P>P )−1q

10. Given f(x) = x>Ax, we must show df
d~x (x) = 2x>A

f(x) = x>Ax = x>


∑n

i A1ixi

...∑n
i Anixi


f(x) =

n∑
j

n∑
i

Ajixixj

So let’s find the partial derivative with respect to a general index k

∂f

∂xk
=

∂

∂xk

n∑
j

n∑
i

Ajixixj

Discretely, there are 4 different partial derivatives segments that must added together.
If i & j both equal k, then

∂

∂xk

n∑
j

n∑
i

Ajixixj = 2Akkxk | i, j = k

If i equals k but j does not, then

∂

∂xk

n∑
j

n∑
i

Ajixixj =

n∑
j 6=k

Ajkxj | i = k, j 6= k

Likewise, if i does not equal k but j does, then

∂

∂xk

n∑
j

n∑
i

Ajixixj =

n∑
i 6=k

Akixi | i 6= k, j = k
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And if neither i nor j equal k, then

∂

∂xk

n∑
j

n∑
i

Ajixixj = 0 | i, j 6= k

Together,

∀i, j, k :
∂

∂xk

n∑
j

n∑
i

Ajixixj = 2Akkxk +

n∑
j 6=k

Ajkxj +

n∑
i 6=k

Akixi + 0

Let’s ease the restriction on the summations, so that both sets can add from 1 to n, while
keeping the solution equivalent

= 2Akkxk + (

n∑
j

Ajkxj −Akkxx) + (

n∑
i

Akixi −Akkxx)

=

n∑
j

Ajkxj +

n∑
i

Akixi

Since both i and j range from 1 to n, we can reduce the amount of variables

=

n∑
i

Aikxi +

n∑
i

Akixi

=

n∑
i

Aikxi + Akixi

=

n∑
i

(Aik + Aki)xi

This was the case for any index k in the range 1 to n. But to take every partial derivative
into account, we must sum all partial derivatives together and format it into the following
form

df

d~x
(x) ,

[
∂f
∂x1

. . . ∂f
∂xn

]
So ∑ df

d~x
(x) =

n∑
k

n∑
i

(Aik + Aki)xi

And since
x>A =

[∑n
i Ai1x1 . . .

∑n
i Ainxn

]
then

x>(A + A>) =
[∑n

i (Ai1 + A1i)x1 . . .
∑n

i (Ain + Ani)xn

]
∑

x>(A + A>) =

n∑
k

n∑
i

(Aik + Aki)xi

∴
df

d~x
(x) = x>(A + A>)

And since A is a symmetric matrix, df
d~x (x) = 2x>A
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11. df(x(s))
d~s is equivalent to df

d~x
d~x
d~s due to the chain rule.

First solve for df
d~x

f(x) = x1x
2
2

df

d~x
=
[
x2
2 2x1x2

]
Then solve for d~x

d~s

x(s) =

[
3s1 + s2
s1 + 5s2

]
=

[
3 1
1 5

] [
s1
s2

]
d~x

d~s
=

[
3 1
1 5

]
∴

df(x(s))

d~s
=
[
x2
2 2x1x2

] [3 1
1 5

]
=
[
3x2

2 + 2x1x2 x2
2 + 10x1x2

]
where

x1 = 3s1 + s2

x2 = s1 + 5s2
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